.
VR
xxmrsinister80xx's Journal



THIS JOURNAL IS ON 79 FAVORITE JOURNAL LISTS

Honor: 0    [ Give / Take ]

PROFILE




1 entry this month

 

Basic: The String Theory

22:32 Sep 16 2006
Times Read: 2,245


Think of a guitar string that has been tuned by stretching the string under tension across the guitar. Depending on how the string is plucked and how much tension is in the string, different musical notes will be created by the string. These musical notes could be said to be excitation modes of that guitar string under tension.

In a similar manner, in string theory, the elementary particles we observe in particle accelerators could be thought of as the "musical notes" or excitation modes of elementary strings.

In string theory, as in guitar playing, the string must be stretched under tension in order to become excited. However, the strings in string theory are floating in spacetime, they aren't tied down to a guitar. Nonetheless, they have tension. The string tension in string theory is denoted by the quantity 1/(2 p a'), where a' is pronounced "alpha prime"and is equal to the square of the string length scale.

If string theory is to be a theory of quantum gravity, then the average size of a string should be somewhere near the length scale of quantum gravity, called the Planck length, which is about 10-33 centimeters, or about a millionth of a billionth of a billionth of a billionth of a centimeter. Unfortunately, this means that strings are way too small to see by current or expected particle physics technology (or financing!!) and so string theorists must devise more clever methods to test the theory than just looking for little strings in particle experiments.

String theories are classified according to whether or not the strings are required to be closed loops, and whether or not the particle spectrum includes fermions. In order to include fermions in string theory, there must be a special kind of symmetry called supersymmetry, which means for every boson (particle that transmits a force) there is a corresponding fermion (particle that makes up matter). So supersymmetry relates the particles that transmit forces to the particles that make up matter.

Supersymmetric partners to to currently known particles have not been observed in particle experiments, but theorists believe this is because supersymmetric particles are too massive to be detected at current accelerators. Particle accelerators could be on the verge of finding evidence for high energy supersymmetry in the next decade. Evidence for supersymmetry at high energy would be compelling evidence that string theory was a good mathematical model for Nature at the smallest distance scales.


COMMENTS

-



yamato0koya
yamato0koya
21:30 Oct 29 2008

Wow. . . Could you tell me more? I'm highly curious about this string theory.





Desire2bbitten
Desire2bbitten
02:05 May 24 2009

Dude...

they're....strings

LOL;o)





AzriellaRipley
AzriellaRipley
07:06 Oct 24 2009

You just gave me the best "Mind Sex" ever. Hahahaha





RainNyx
RainNyx
03:59 Mar 21 2013

Very interesting..





JaydeBloodaxe
JaydeBloodaxe
01:19 Aug 24 2017

How would you describe quantum mechanics?





thecrucible
thecrucible
05:47 Nov 25 2018

Interesting - I’ve never heard of this, informative journal on the subject though ... I’m glad I read this one.








COMPANY
REQUEST HELP
CONTACT US
SITEMAP
REPORT A BUG
UPDATES
LEGAL
TERMS OF SERVICE
PRIVACY POLICY
DMCA POLICY
REAL VAMPIRES LOVE VAMPIRE RAVE
© 2004 - 2024 Vampire Rave
All Rights Reserved.
Vampire Rave is a member of 
Page generated in 0.0521 seconds.
X
Username:

Password:
I agree to Vampire Rave's Privacy Policy.
I agree to Vampire Rave's Terms of Service.
I agree to Vampire Rave's DMCA Policy.
I agree to Vampire Rave's use of Cookies.
•  SIGN UP •  GET PASSWORD •  GET USERNAME  •
X